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this implies that ‘p = 0, the latter defining the invariant manifold .I‘,i. 
The author thanks E. E. Shnol’ and the participants of a seminar directed by D. P. Zhe- 
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The problem of determining the smallest number of controls stabilizing the equilibrium 

position of a mechanical system is investigated. Necessary and sufficient conditions are 
established under which stabilization of the equilibrium position is possible with a con- 
trol of minimal dimension, and this dimension is determined. The influence of gyrosco- 
pit and dissipative forces on the dimension of the stabilizing control is studied comple- 
tely for a linear approximation of the system being considered. Necessary conditions 
are found under which stabilization is possible by forces which depend only on the velo- 

city. 

1, We consider a controlled conservative mechanical system with n degrees of free- 
dom, whose motion is described by the Lagrange equations 

d tYT 
-7- dt tiqi 

~+~=Q,(u~,..~~(I,), Qi(O,.-*,O)=O (i=l.-..tn) (1.1) 
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Here q represents the generalixed..co&inates, T and n am the-specified kinetic and 
potential energies, respectively, ul, . . . . 24, are the controls. The functions Qt (ur , . . . , 
. . . . u,) are to be determined. 

Suppose that system (1.1) has an equilibrium position q = q” when u E 0 . With- 
out loss of generality we can take q” = 0. We pose the problem of determining the 
smallest number of controls by means.of which we can stabilize upto asymptotic stability 
the trivial solution q = q”’ - 0 of system (1.1) for a certain choice of Q., If r is this 
number and &” (r.+, . . ., z.+) 
-dimensional control u = 

are the corresponding functions, then there exists an r- 
U” (q, q’) stabilizing the solution q = q’ = 0 of system 

(1.1) when Qr = 0:; and it is impossible to find functions of less than ‘r variables, 

say, Qi (~1, . . . . u_) (rl < r),.for which it is possible to choose controls % (4, C7’>, ... 
. ..) u,, (4, q’) stabilizing the equiIibrium position q = q’ = 0. 

In ‘a neighborhood of the equilibrium position q = q’ = 0 the kinetic and I&en- 
tial energies can be represented in the form 

T ;i =- 4jQi’Qj + (**)t aij = uji = eonsti. 
i,j==l 

IL-$ 2 ciJQiQj + (**)p Cij = CJ& = CtUlSL 
iv+1 

where (**) denotes a sum of terms of the third and higher orders in Qi and qi’ (i = 1, . . . 
. . . . n)* 

The first approximation of system (1.1) is written in the form 

&“=Cq+Pu, A=l(Qjl, C=IICijll (i,i=&...,n) (4 -2) 

Here P is an (n x r )-matrix to be determined. 
By hi we denote the roots of the equation det IJ C - hA 11 = 0 and by fi the corre-, 

spondlng eigenvectors, Cfi = h,Af,. We make the change of’variables q = <DY, 
0 = IIf ...? f, /I. Then, system (1.2) is reduced to the form [l] 

Yi ‘* = AiYi + (@*PU)i (i = 1,. . *, R) 

Here and subsequently the asterisk denotes transposition. We set 

yi = zsic yi = hi-1 (i = 1, . . ., n) 

s(l)* = I(517 x.9,. . *, %-111, r(2)* = II 52, x4, . . . , zsn II ) 3.9 = II x(l)*, 2(z)* 11 

hl 0 . :. 0 
LIZ o&a....0 B* = II (@*P)*, 011 (1.3) . . . . . 

0’0.. . h, 
E is the unit rl Xn matrix 

Then system (1.2) takes the form 

x(l) = Ax@) + @*Pup x(s)’ = EdI), x’ = Lx + BU (1.4) 

Suppose that we are given a system of the general form 

z’ = Fz + Gu + f (4 + g (4 (1.5) 
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Here z is an m-dimensional vector, P, G are matrices, f, g are vector-valued func- 
tions whose expansions start with terms of the second order of smallness, 

The following assertion is valid p]. In order that it be possible to stabilize the solu- 

tion z = 0 of the linear approximation of system (1.5) upto asymptotic stability by an 
r-dimensional control for a certain choice of the matrix G , and that it be impossible 

to make such a stabilization by an (r - I)-dimensional control for any choice of G 
whatsoever, it is necessary and sufficient that all the roots of the largest common divisor 

D,_, (A) of the (m - r)th-order minors of the matrix 11 F - hE 11 have negative real 

par&or that p,_, (h) 3 1 and D,_,+, (h) has a root with a nonnegative real part. 

The condition’ that the real parts of all roots of D,_, (A) be negative or that 
D,_, (a) 3 1 is sufficient for the choosing of the r-dimensional control u for the 

complete system (1.5) with some matrix G and with g = 0. 
If we assume that in D,_,+, (i,) there is a root with positive real part, while in 

D,-, (A) all the roots are located to the left of the imaginary axis or D,_, (A,) s 1, 
then there are no G and g (u) whatsoever for which we can select an r,-dimensional 

control (ri < r) stabilizing the solution z = 0 of system (1.5) upto asymptotic stabi- 
lity, i. e. in this case r‘ is the minimal possible dimension of the control. 

Ifby ‘#I (a), . . . . 4t (a) we denote the invariant polynomials of matrix P, then, as 

is known from [l], the m-dimensional Euclidean space R, can always be split up into 

subspaces I,, . . . , I, , cyclic relative to the given linear operator F , with the minimal 

polynomials *I (a), _.., I& (a). Then, if all the roots in D,_, (h) have negative real 

parts, or if D,_, (A) EZ 1, as the matrix G we can take the matrix I/ gl, ...Y gr 117 
where gi is the generating vector of Ii (i = 1, . . . , n). 

Let us apply these results to the conservative system (1.1) being considered and to its 

linear approximation (1.2) or (1.4). 
We assume that among the roots hi (i = 1, . . . , n) there are p distinct ones. We set 

a, = h, - . . . = a,, , as,+l = as,+2 = . . . = as,+s,, . . . 

. . . . L+...+,~,_~+~=...=~~,+...+~~ h+... -ts,= n, 

A:, =+ b, =f= . . . =+ as,+...+sp) (I.@ 

Without loss of generality we can take 

1 <sI<sz<. . .<s,Qn (l.i) 

The following assertion is valid. 

Theorem 1.1. Let &,+...+sn be the root of highest multiplicity sp of the equa- 

tion det 1) C - hA 11 = 0. The trivial solution q = q’ = 9 of systems (1.1) and (1.2) 
can always be made asymptotically stable by means of the sp controls u = 11 ul, , . . , 
. . . . usp 11. The number .sp will be the minimal possible for the linear system (1.2). 
If sp=sp-r= . . . = sk (k<p) and if even one of the numbers 

h 
h,, + . . . + Sp, AS, + . . 

* * . ,+sp_l’ - * *, s,L,.,+sk is positive, then the number s,,will be the minimal possible also 

for the complete system (1.1). 

Proof. With the aid of elementary transformations the characteristic matrix 

l/L - hE~,,ll (A& is the 2n X 2n unit matrix) of system (1.4) can be brought to the equi- 

valent diagonal matrix Illijl (i, j = i, . . . . 2n) 

lij = 0 (i #i). l,, = 12.2 = . . . = 12n_s.o’ ‘u-s, = 1 
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1 an-sp+i,2n-sp+i = * * * = 1 
an-spl, an-rpl = a2 - as,+. . .+s 

1 
zn-spl+l, 2n-rp_l+l 

-. . . = 1 2n_s 

p-2. m-p-a = (A9 - as,+. . .++l) (hpL h,+. . .+s*) 
. . . . . . . . . . ..I............................. 

1 
On-s,+l, 2n-s,+i = . * . 

=1 zn, *n = P2 - &I (A2 - h*+sJ * * * (A2 - As,+. . .+sp) 

From the form of the matrix li, it is obvious that the largest common divisor of the 
(2n - sp) th-order minors is Dnup (I) s 1, while 

D *“__sp+l @) = (h2 - ha+. . .+,,) 

i. e. Z)Z~~~+~~ (h) has a root with a nonnegative real part. According to @] this is neces- 
sary and sufficient for it to be possible to stabilize the solution z = 0 of system (1.4) 
upto asymptotic stability by an \s,-dimensional control for some choice of matrix B 

and impossible to stabilize it asymptotically by a k.-dimensional control (k < +) for 
any choice of B whatsoever. To prove this assertion also for system (1.2) we need to 
show only that the matrix B in(l.4) can be taken in the form (1.3). 

Indeed, let $i (J.) be the i,th polynomial of matrix L. Since 5 is contained in & (h) 
only in the form p and the argument 

La 

we have 

I *i(l) 0) 0 

I#= o g.(l) (A) 
z I (1.8) 

Here *‘i(l) (h) is the ith Invariant polynomial of the matrix A, equalling. obviously, 

,i(o (h) = *)i (r/X) 

If mi is the degree of polynomial $i (h), then, clearly, the degree of pi (A) is VP mi. 
By Ii we denote a cyclic subspace of the 2n-dimensional Euclidean space RI, , with 
characteristic polynomial $i (11). and by I?’ a cyclic subspace of the n-dimensional 
Euclidean space .R, , with characteristic polynomial gi(r) (J.). Let hi(l) be the generating 
vector of I?). Then bv the definition of a generating vector. 

w.(l) (A) b.(l) = 0 ‘L * , det 11 b.(l), Ah.(l), . . . , A”’ “‘i-l b.(l) I\ # 0 , t 1 (1.9) 

Let us show that as the generating vector of Ii we can take the 2n-dimensional vector 
“bi, bi* = 11 b\“*, 0 II. Indeed, from (1.8) and (1.9) follows 

(si (L) bi)* = II [qitl) (A) bi(‘)]*, 0 I= 1 O,Oa 

On the other hand, the vectors bi, Lbi, . . . , Lmrl bi are linearly independent, which is 
obvious from (1.9) and from the form of the matrix 

II’,, Lbi, . . . 1 Lmi-‘biII 

which differs only in the order of the columns from the matrix 

oo... 0 b,(l) Abi(l) . . . ,(‘rmi-lbi(‘) * I 

After the matrix B(l) = 11 bp), . . . . b(,‘)ll ,is found, the matrix P in (1.2) is determined 

u 

b.(l) A$(‘) . . . A”’ ?-’ hi(l) 6 0 . . . 0 
z 
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from the formula P = (@*)-Wl’. 
Completely analogously we can show that if zero values are absent among the eigen- 

vaiues iii (i = 1, . . . . n) s the trivial solution of sysmmfl. 2) can be stabilized upto 
asymptotic stability by forces dependent only on the velocity q’ and the accelerationq”. 
For this it is enough to take the matrix B in (1.4) in the form B* = (0, B(‘)“ll;to deter- 
mine the stabilizing control u = Mt (M. is some ( r X 2n )-matrix), and to pass from 
system (1.4) to system (1.2). The remaining assertions of Theorem 1.1 follow in obvious 
fashion from the a~ve-men~oned results @j. 

From Theorem 1.1 it follows that the solution Q = q* = 8 of system (I. 2) can be 
stabilixed asymptotically by one control if and only if sp = 1. In accordance with 
(1.7) this condition is equivalent to the conditions 

W=W=..*i% (1 .W 

If we assume addi~~ally that the controls behave ln a specific manner, i, e. if we 
impose constraints on the vector p- to which the matrix P in (1.2) reduces in the case 
being considered, then for the stabilizability of the trivial solution of system (1.2) we 
require certain other conditions besides conditions (1.10). For example, if p* = 11 1, 
0 > ***I 0 11 , then, as was shown in p], besides the fulfillment of (1.10) it is further neces- 
sary that all the elements of the first column of matrix cP* he nonxero. 

2, The control u = j/r+, . . . . u, i, stabilizing the trivial solution of system (1.1) upto 
asymptotic stability, depends, in general, on the velocity as well as on the position. Let 
us investigate the conditions under which it is possible to choose the conaols as functions 
of velocity alone. The following assertion is valid. 

Theorem 2.1. If the equilibrium position q = q’ = 0 of system (1.2) can be 
made ~yrnp~ti~~ stable by a me-dime~i~al control dependent linearly only on the 
velocity for some choice of matrix P, then this equilibrium position is necessarily stable 
and all the roots of the equation det 11 C - hA 11 = 0 are negative. 

Proof. According to Theorem 1.1, since the solution q = q’= 0 of system (1.2). or, 
equally, the solution $) = z(s) = 0 of system (1.4), can be stabilized by one control, 
it is necessary that conditions (1.10) be fulfilled and that there exists a vector b* =.I b(i)*, 
011, for which it is possible to choose a stabilizing control in (1.4) in the form u = u(#f. 
The vectors @, M&i), . . . . An-1 bfn are linearly independent, otherwise asymptotic sta- 
bilization by one control is impossible. 

By M1 we denote the matrix 
MI = 11 b (I), Ab(“) , . . . , AR-lb(l)II 

and in (1.4) we make the change of variables 

then we can write (1.4) in the form 
#’ = M,-1 A M1d2) + eu 

,w = &Cl), z* = M-I LM.z -j- M-’ btl 

Here 

(2.f) 

e*=Il4,0 ,..., O/I, z* = [I z(1)*, z(2)* 11 

Since by assumption the control 



u = p%(l) t LI*=npl,*-4blll 

asymptotically stabilizes system (2.1). ‘the characteristicequation of system (2.1) with 
u-= p*z(‘), must have all roots with negative real parts. As is easily seen, this character- 
istic equation reduces to the form 

(-i)n det 0 A - i*E M + x (h) = o (2.2) 

Here x (A) is the determinant of the matrix which is obtained from the matrix1 qlAM1- 
- LaEJ, by replacing the first row by the row 

UP&hi P%L*.*rPTbU 

Polynomial (2.2) is Hurwltzpolynomial by assumption and, therefore, all of its coeffi- 
cients are necessarily positive [l J. But x (A) contaius only the odd powers of L and. con- 
sequently, all the coefficients of the polynomial (- i)” det 1 A --VP& 1 are positive. 
However, this is possible only if & 4.0, (i = 1, . . . . n). 

The necessity of the conditions hi < 0 (i = 1, . . . , n) for it to be possible to sta- 
bilize the solution Q = Q’ = 0 of system (1.2) by forces dependent only on the velo- 
city was proven in [S] under the assumption that the minimal value of the quadratic 
optimizing &ncdonal J;, namely, J,,= min J, considered as a function of the initial 
state 40, Q& of the system, is represente.d as a sum of two terms,one of which depends 
only on the position Qs,while the other, only on the velocity q:. As we see from Theo- 
rem 2.1, this assumption is unnecessary. 

The conditions hi ( 0 (i = 1, . . . . n) is not only necessary but also sufficient for 
the asymptotic stabilization of the solution p = 4’ = 0 of system (1.1) and (1.2) by 
forces depending only on the velocity. It turns out here that as such forces we can always 
take dissipative forces [S, 6l. 

8, Let us assume that additional dhipadve or gyroscopic forces can be imposed on 
system (1.1). The question of the influence_of dissipative and gyrcscopic forces on the 
controllabiliq of system (1.2) was studied in [S, 7, 81. In this and the following sections 
this influence is examined from another point of view, namely : having added dissipative 
or gyroscopic forces to system (1,2), ,to what extent can we succeed in lowering the 
dimension of the control sufficient for the asymptotic stabiI.ization of the trivial solution 
of (1.2). 

Theorem 3.1. lo. If among the roots (1.6) of the equation det 1 C - hA !I=0 
there is a zero root h r,+_.+s of multiplicity ski then, having added suitably selec- 
ted dissipative forces to syste$(l.2), we can always achieve the asymptotic stability of 
the solution q = ~q’ = d of system (1.2) by an Sk-dimensional control under a suitable 
choice of matrix P. The number Sk is the minimal possible, i. e. for any dissipative 
forces added to the system (1.2)it G impossible to find an r-dimensional control 
(r < Sk) which asymptotically stabilizes the solution q = Q’ = 0 of system (1.2) for 
any choice whatsoever of an( n X r)-matrix P. 

2’. If there are no zero roots among the roots (1.6) of the equation det 1 c - hA fl= 
= 7). then, having added suitably selected dissipative forces to system (1.2), we can 
always achieve the asymptotic stability of the solution CJ = 4’.= 0 of system (1.2) by 
a one-dimensional control under a suitable choice of an ( n x I)-matrix Y. 

hypothesis iu 2” is fulfilled and if all the roots of the equation det 1 c - 
are negative, then the solution q = q’ = 0 of the system (1.2) can be 
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made asymptotically stable by the addition of dissipative forces [4]. 
If the zero root A,,+. . .+8k is the root of highest multiplicity, i.e. Sk = Sp, then, as 

follows from the Theorem 1.1 and from item 1’ of Theorem 3.1, the additlon of dissi- 
pative forces does not lower the dimension of the stabilizing control. 

Proof, Let us first consider the influence of dissipative forces. Let D 0 fdJ/, 

dij = dji (i, j = 1, . . . . n) , be a positive definite matrix. We consider the system 

&)’ = _ Dz(l) + AZ(s) + B(%, ,(2)’ = &a) (3.1) 

System (3.1) differs from system (1.4) in the presence of dissipative forces with the 
Rayleigh function 

$ jj dijx2i-152j-1 

i, j=l 

By elementary transformations we can reduce the characteristic matrix of system (3.1) 
with u E 0 to the form 

II 

E 0 

0 h”E+hD-A II 
(3.‘) 

Here E is the unit matrix. 
In what follows we shall assume that dij = 0 when i # i. Then, obviously, matrix 

(3.2) is diagonal. To any root is,+. . .+s P 
from (1.6) there correspond sselements in (3.2). 

h2 + diih - ‘53,. .+8 (i = SI + . . 
P 

f + sq_l + 1, . . - , s1+ . . . + sq) (3.3) 

Let us require that the polynomials (3.3) be relatively prime. If LB,+. .+sp # 0 it is 
obvious that this can always be achieved by a suitable choice of ‘dii-5 6. It is enough 
to require that 

dii Z djj 0 #i) (i = h-1 + . . . + *qg_l + 1, f . . I s1-t . . . + SJ (3,.4) 

If %,+. . .+ss = 0, the polynomials (3.3) contain a common factor h for arbitrary values 
of dii and may not be relatively prime. Any two polynomials (3.3) corresponding to 
distinct roots can be made relatively prime by a suitable choice of coefficients d . For 
example, let us assume that hi # AZ and let us consider the polynomials 

k2 + d,,h - A,, A2 + d& - h? 

They will be relatively prime if their resultant [9] 

(hi - AZ)2 i (d,, - &) (hi&z - Ld,,) + 0 (3.5) 

which can always be achieved. 
Suppose that one of the roots (1.6) is zero, say, As,+, . ,+Sk = 0. Then, in accord with 

what was said above, by choosing dii > 0 in such a way that conditions (3.4) and (3.5) 
are fulfilled, we can reduce matrix (3.2) to the equivalent diagonal matrix 

II ‘ij II (i, j = 1,. . ,a) 

lij=O (i#j), 111 = 122 = . . . = lZn+ k’ 2,,-sh. = 
i 

aCt+% 

1 2n--sk+l,2wK+l= (A2 + 4Tk+l,uh.+l 
h) fi 11 (Ju' +cliih- h..I+., .A,*) 

a=1 i=O,+l 
afk 

. . . . . . ..._........................-***- 

1 
2% 2n = (A2 + 4k+sk’ ok+Sk 1) fi ua;” (h’+diih,‘.Sli,. ,+ ) 

a=1 &>-,+I 
ai=k 

Gk = $1 + . . . + ~k_~ 
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obviously, DP,,_rk (A) s 1 and the trivial solution of system(3.1) can, accacdlng to 
@I, be stabilized by an Sk -dimensional control for a suitable choice of the matrix B(l). 
Thus, the addition of dissipative forces of a particular form (dij = 0, i # ii to system 
(1.4) or, what is the same, to system (1.2) permits us to lower the number of controls 

from sp to fk, where, in accord with (1.7), sh < sn. 
On the other hand, whatever be the forces, linearly dependent on velocity alone, added 

to (1.2). stabilization by an r-dimensional control (r ( sR) is impossible. Let us assume 

to the contrary that there does exist an ( n X r )-matrix P for which stabilization by an 
r -dimensional control is possible. Let us consider the group of equations from (1.2) 

corresponding to the zero root h8,+. . .+sl( = 0. Since the number sh of equations in the 
group is larger than the number r of controls +, . . . . u,., the latter can always be elimi- 

nated and, whatever be the added forces, linearly dependent only.on the velocity, we can 
obtain at least one integral in the form f (9, 9’) = con& not depending on u. But the 
presence of this integral signifies that the solution q = q’ = 0 cannot be stabilized by 
any control u = 11 ul, . . . . up II whatsoever. 

If there are no zero roots among the roots (1.6), then matrix (3.2) can be reduced to 
the matrix \I lijll (i, i = i, . . ., 2n) 

lij=O (i#i), (111 = I!22 = . . . = 1 2*-l, 2n_1= f 

1 an,z*= fi fi (~~+4i~--h,*...+,a) 
a=1 iC8’ 

(::::;;y.;szl+i) 

Obviously, Dz,,+ (h) E 1 ‘and in this case system (3.1) can be made asymptoticaIIy 

stable by one control or is already asymptotically stable if all J.i < 0 (i = 1; . . . . n). 

Indeed, in the latter case all the roots of the characteristic polynomial 

of matrix (3.2) have negative real parts. In other words, in this particular case we obtain 
the known result [43 that an isolated and stable equilibrium position of system (1.2) can 
be made asymptotically stable by dissipative forces. 

We have thus proven the validity of Theorem 3.1. 

4, We now assume that gyroscopic forces are added to system (1.2). 
Theorem 4.1. 1’. If among the roots (1.6) of the equation det I( C - hA 11 = 0 

there is a zero root A,,+. . .+Sk = 0 of multiplicity sk, then, having added suitably selected 
gyroscopic forces to system (1.2), we can always achieve the asymptotic stability of the 
solution Q = 4’ = 0 of system (1.2) by an Sk-dimensional control u = u (q, q’) under 

a suitable choice of matrix P. The number s.k,is the minimal possible, i. e. for any gyro- 
scopic forces added to the system (1.2) it is impossible to find an r-dimensional control 

(F < sk) which asymptotically stabilizes the solutionv = q’ = 0 of system (1.2) for 
any choice whatsoever of matrix P. 

2’. If there are no zero roots among the roots (1.6) of the equation det [I C-AA /‘=O, 
then, having added suitably selected gyroscopic forces to system (1.2). we can .always 
achieve the asymptotic stability of the solution ‘1 = q’ = 0 of system (1.2) by a one- 
dimensional control under a suitable choice of an (n X 1) -matrix P. 

Proof. Let H = II hijb, hij = - hji (i, j = 1, . . . . n) be some mat&t. Let us con- 

sider the system 
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2a) = - jy&) + A#) + B(‘)u, .@I = ,&(l) 
(4.2) 

obtained from system (1.4) by the addltiorrof gyroscopic forces. The characteristic 
matrix of system (4.1) is reduced to the equivalent matrix 

B E 0 
0 aaE++hH_A 7 E istheunit matrix, 

I 
(4.2) 

We shall take it that 
h i, c+l#O, hi, = 0 (k = i + 2, ,. ., n i = 1, 2, . . ., n) 

Then tbe matrix As E + U7 - A has the form 
(4.3) 

P - h hi& 0 . . . 0 ' 

-hd I?-& h&L . . . 0 

0 -h& ho--)u... 0 (4.4) 
. . . . . . . . . . . . . . . . . . 

0 0 0 . . . ha - h n 

Among the roots k (i = i, . . . . n) from (1.6) there are p distinct ones. If one of them 
is zero, without loss of generality we can mume that the corresponding group of elements 
is located in the lower right comer of matrix (4.4). 

Let \n, + 0. We multiply the second row of matrix (4.4) by - h / bs (his # 0 accord- 
ing to (4.3)) and we add it to the firs& We multiply the f’irst column of the new matrix 
obtained by kl& / & and we add it to the second. Further, by subtracting the first row 
of the new niatrlx. multiplied by an appropriate polynomial, from the second and third 
rows, we arrive at the matrix 

1 0 0 . . . 0 

0 cp1(5)-I., hd . ..O 

0 (p%(A) Aa--hs...o 

. . . . . . . . . . . . 

0 0 0 0 

Here ‘PI (A), ‘ps (;I) are certain polynomials and q1 (0) = cp~ (0) = 0. If & # ‘0, we can 
continue the indicated procedure, etc. Thus, if one of the roo$ (1.6). say, ‘k~z,.__+in of 
multiplicity Sk is zero, then matrix (4.2) can be reduced to the equivalent matrix 

0 lij 0 (i, j = 1, , . .t 2n) 

l,t=O (i:#j) (i, j-1 ,..,., 2n-Sk) 

Ill:= hS = * ’ * = &n-rk, *n_rk = i 

ii, = qil (h) (i, j = 2n - s# + 1, . . ., 2n) 

Here vii (a) are certain polynomials, ‘pii (0) = 0. Obviously, in this case 

D 2n_sk;(Q = 1 

If there are no zero roots among the roots (1.6). then matrix (4.2) reduces to the matrix 

1) Zij [I (i, j = 1, . . ., 2n) 

lij = 0 (i # i), 111 = lpL =a - - =42n_1, zn_l 7 1, 1%. 2n = Cp (A) 
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Here ‘p (1L)’ is a certain polynomial, g (0) = 0. 
Intliiscase 

D m-1 @I = i 
In precisely the same way as in Sect. 3, Theorem 4.1 is established from what is shown 
above. 

Just as in Sect. 3 we can show that if the zero root hd,+...+Sk =. 0 is the root of highest 
multiplicity. i. e. Sk = sp, then the addition of gyroscopic forces does not allow us to 

lower the dimension of the stabilizing control. 
N o t e . By the addition of dissipative or gyroscopic forces we can lower the dimension 

of the conaol which stabilizes the trivial solution of system (1.1) upto asymptotic sta- 
bility from sp to m (m is one of the numbers 0, 1, sh).This assertion is obvious from Theo- 
rems 3.1, 4.1 and from the known fact that the asymptotic stability of the trivial solu- 
tion of the complete system (1.1) follows from the asymptotic stability of the trivial 
solution of the linear approximation (1.2) [lo). 

A comparison of Theorems 3.1 and 4.1 shows that gyroscopic and dissipative forces 
may in almost like fashion lower the dimension of the stabilizing control. The single 
case when dissipative forces can achieve more is the particular case of Si < 0 (i = 1, . . . , 

. . . , n) in which the addition of dissipative forces to system (1.2) can strengthen a stable 
equilibrium position q = q’= O’upto asymptotic stability. However, in a number of cases 
it has proved to be preferable to add gyroscopic forces for lowering the dimension of 
the control because the addition of gyroscopic forces does not caIl for an additional 
expenditure of energy on the system’s motion. 

The author thanks V. V. Rumiantsev for discussion of the paper and for valuable remarks. 
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